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Lecture 21

Sensitivity Functions

- Comparison of Circuits

- Predistortion and Calibration



Theorem: If all op amps in a filter are 

ideal, then ωo, Q, BW, all band edges,  

and all poles and zeros are homogeneous 

of order 0 in the impedances.

Theorem: If all op amps in a filter are 

ideal and if  T(s) is a dimensionless transfer 

function, T(s), T(jω), | T(jω) |,               , are 

homogeneous of order 0 in the impedances
 T jω

Review Correction from last time



Bilinear Property of Electrical Networks

Theorem:  Let x be any component or Op Amp time constant 

(1st order Op Amp model) of any linear active network 

employing a finite number of amplifiers and lumped passive 

components.   Any transfer function of the network can be 

expressed in the form
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N s +xN s
T s =

D s +xD s

where N0, N1, D0, and D1 are polynomials in s that are not dependent upon x

A function that can be expressed as given above  is said to be a bilinear 

function in the variable x and this is termed a bilateral property of electrical 

networks.

The bilinear relationship is  useful for

1. Checking for possible errors in an analysis

2. Pole sensitivity analysis

Review from last time



Root Sensitivities
Consider expressing T(s) as a bilinear fraction in x
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Theorem:  If zi is any simple zero and/or pi is any 

simple pole of T(s), then
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and

Note:  Do not need to find expressions for the poles or the zeros to find the pole 

and zero sensitivities !

Note:  Do need the poles or zeros but they will generally be known by design

Note:  Will make minor modifications for extreme values for x (i.e. τ for op amps)

Review from last time



Root Sensitivities
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Summary:  Pole (or zero) locations due to component 

variations can be approximated with simple analytical 

calculations without obtaining parametric expressions for 

the poles (or zeros).

Ideal

Components
i ip p p

i
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where

and

Alternately,

Review from last time



Transfer Function Sensitivities
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Review from last time



Sensitivity Comparisons

Consider 5 second-order lowpass  filters 

(all can realize same T(s) within a gain factor)
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K
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VIN
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Passive RLC
+KRC

Bridged-T Feedback Two-Integrator Loop 

Review from last time



Sensitivity Comparisons

Consider 5 second-order lowpass  filters 

(all can realize same T(s) within a gain factor)

-KRC Lowpass
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-K = -

R

Review from last time



How do these five circuits compare?

a) From a passive sensitivity viewpoint?

- If Q is small

- If Q is large

b) From an active sensitivity viewpoint?

- If Q is small

- If Q is large

- If τω0 is large



Comparison:  Calculate all ω0 and Q sensitivities

a) – Passive RLC R L

CVIN
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Consider passive sensitivities first
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Case b1 : +KRC  Equal R, Equal C
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Case b2 : +KRC  Equal R, K=1
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c)   Bridged T Feedback
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d)   2 integrator loop
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d) -KRC passive sensitivities

For R1=R2=R3=R4=R, C1=C2=C 05+K
Q = 

5
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Passive Sensitivity Comparisons

0ω
xS Q

xS

Passive RLC

+KRC

Bridged-T Feedback 

Two-Integrator Loop 

Equal R, Equal C   (K=3-1/Q) 

Equal R,   K=1      (C1=4Q2C2) 

1
2

 1,1/2

0,1/2

0,1/2 0,1/2, 2Q2

Q, 2Q, 3Q 

0,1/2

0,1/2 1,1/2, 0

1/3,1/2, 1/6

Substantial Differences Between (or in)  Architectures

-KRC 
less than or equal to 1/2 less than or equal to 1/2





Where we are at with sensitivity analysis:

Considered a group of  five second-order filters

• Closed form expressions were obtained for ω0 and Q

• Tedious but straightforward calculations provided passive 

sensitivities directly from the closed form expressions 

Passive Sensitivity Analysis

Active  Sensitivity Analysis

• Closed form expressions for ω0 and Q are very difficult or 

impossible to obtain

If we consider higher-order filters

Passive Sensitivity Analysis

• Closed form expressions for ω0 and Q are very difficult or 

impossible to obtain for many useful structures

Active  Sensitivity Analysis

• Closed form expressions for ω0 and Q are very difficult or 

impossible to obtain

???

Need some better method for obtaining sensitivities when closed-form 

expressions are difficult or impractical to obtain or manipulate !!



Relationship between pole sensitivities 

and 0 and Q sensitivities
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Relationship between active pole sensitivities and 

0 and Q sensitivities

Theorem:  

Define   D(s)=D0(s)+t D1(s)
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(from bilinear form of T(s))

Claim:   These theorems, with straightforward modification, also apply to 

other parameters (R, C, L, K, …)  where, D0(s) and D1(s) will change since 

the parameter is different 



Active Sensitivities
+KRC



Active Sensitivities
+KRC



c)    Bridged-T structure

Active Sensitivities
Bridged T Feedback



c)    Bridged-T structure
Bridged T Feedback

Active Sensitivities



Two integrator loop architecture

Active Sensitivities



d)    Two integrator loop architecture

Two integrator loop architecture

Active Sensitivities



e) -KRC Active Sensitivities
- KRC



Active Sensitivities
- KRC



Active Sensitivity Comparisons

Passive RLC

+KRC

Bridged-T Feedback 

Two-Integrator Loop 

Equal R, Equal C   (K=3-1/Q) 
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0ω
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Passive RLC

+KRC

Bridged-T Feedback 

Two-Integrator Loop 

Equal R, Equal C   (K=3-1/Q) 

Equal R,   K=1      (C1=4Q2C2) 

1
2
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Q, 2Q, 3Q 
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1/3,1/2, 1/6

Are these passive sensitivities acceptable?  
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less than or equal to 1/2 less than or equal to 1/2



Active Sensitivity Comparisons

Passive RLC

+KRC

Bridged-T Feedback 

Two-Integrator Loop 
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Are these active sensitivities acceptable?  



Are these sensitivities acceptable?  

0

0ω0

x

Δω Δx
S

ω x


In integrated circuits,  R/R  and  C/C  due to process variations can be K

30% or larger due to process variations

Even if sensitivity  is around ½ or 1, variability is often orders of magnitude too large

Passive Sensitivities:

Active Sensitivities:

All are proportional to τω0

Some architectures much more sensitive than others

Can reduce τω0 by making GB large but this is at the expense of increased power

and even if power is not of concern, process presents fundamental limits on how 

large GB can be made

Many applications require Δω0/ω0<.001 or smaller and similar requirements on ΔQ/Q



What can be done to address these problems?

1. Predistortion
Design circuit so that after component shift, correct pole locations are 

obtained

Predistortion is generally used in integrated circuits to remove the bias 

associated with inadequate amplifier bandwidth

Predistortion does not help with process variations of passive components

Tedious process after fabrication since depends on individual components

Temperature dependence may not track

Difficult to maintain over time and temperature

Over-ordering will adversely affect performance

Seldom will predistortion alone be adequate to obtain acceptable performance

Bell Labs did to this in high-volume production (STAR Biquad)



What can be done to address these problems?

1. Predistortion

Design circuit so that after component shift, correct pole locations are 

obtained

Im

Re

Desired Pole

Actual Pole Location  due 

to parameter variations

Pole shift due to parametric variations (e.g. inadequate GB)



Desired 

Response

Actual  

Response



What can be done to address these problems?

1. Predistortion

Design circuit so that after component shift, correct pole locations are 

obtained

Pre-distortion concept

Im

Re

Desired Pole

Pre-distored  Pole 

Location  

Actual Pole Location  due 

to parameter variations



Actual  

ResponseDesired 

Response
Predistorted   

Response



What can be done to address these problems?

1. Predistortion

Design circuit so that after component shift, correct pole locations are 

obtained

Over-ordering Limitations with Pre-distortion 

Im

Re

Over-order 

pole



Actual  

Response

Desired 

Response

Predistorted   

Response

Parasitic Pole Affects Response

Predistortion almost always done even if benefits only modest

Not effective if significant deviations exist before predistortion



What can be done to address these problems?
2. Trimming
a) Functional Trimming

• trim parameters of actual filter based upon measurements

• difficult to implement in many structures

• manageable for cascaded biquads

b) Deterministic  Trimming (much preferred)

• Trim component values to their ideal value

Continuous-trims of resistors possible in some special processes

Continuous-trim of capacitors is more challenging

Link trimming of Rs or Cs is possible with either metal or switches

• If all components are ideal, the filter should also be ideal

R-trimming algorithms easy to implement

Limited to unidirectional trim 

Trim generally done at wafer level for laser trimming, package for link trims

• Filter shifts occur due to stress in packaging and heat cycling

c) Master-slave reference control (depends upon matching in a process)

• Can be implemented in discrete or integrated structures

• Master typically frequency or period referenced 

• Most effective in integrated form since good matching possible

• Widely used in integrated form 



Stay Safe and Stay Healthy !



End of Lecture 21


